USN

Fourth Semester B.E. Degree Examination, Dec.2015/Jan.2016

Introduction to Quantum Mechanics

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

		<u>FARI - A</u>		
1	a.	Explain limitations of classical physics.	(04 Marks)	
	b.		(08 Marks)	
	c.	Explain wave packets in space and time.	(08 Marks)	
2	a.	Derive Schrodinger wave equation for a particle in one dimension.	(10 Marks)	
	b.	Obtain an expression for Ehrenfest's theorem.	(10 Marks)	
3	a.	Explain Hilbert space with the help of an example.	(06 Marks)	
	b.	Write note on Hermitian, unitary and projection operators.	(06 Marks)	
	c.	Explain matrix representation of an operator.	(04 Marks)	
	d.	Describe Bra and Ket notation for vectors.	(04 Marks)	
4	a.	State and explain the fundamental postulates of quantum mechanics.	(10 Marks)	
	b.	Explain Poisson brackets and commutator brackets along with the properties.	(05 Marks)	
	c.	Describe the equation of motion interms of quantum mechanics.	(05 Marks)	
PART - B				
5	a.	Derive Schrodinger wave equation with respect to a rigid rotator.	(10 Marks)	
	b.	Obtain the wave function and energy eigen value for a particle in three dimensional	al box. (10 Marks)	
6	a.			
		trap.	(10 Marks)	
	b.	Explain energy bands in conductors, semiconductors and insulators. Also explain states for solids.	(10 Marks)	
7	a.	Derive an expression for time independent perturbation theory for non-degenerate	energies. (10 Marks)	
	b.	Explain WKB approximation.	(10 Marks)	
8	a.	Explain turing machines and logic gates.	(06 Marks)	
	b.	Differentiate between reversible and irreversible computation.	(05 Marks)	
	c.	Describe Moore's law.	(04 Marks)	
	d.	Write note on quantum bits.	(05 Marks)	
		•		

* * * * *